Enrico Ronca

Theoretical and Computational Quantum Chemistry



  1. Polaritonic response theory for exact and approximate wave functions“, M. Castagnola, R. R. Riso, A. Berlini, E. Ronca*, H. Koch, ArXiv: 2305.03477, 2023.
  2. Molecular van der Waals fluids in cavity quantum electrodynamics“, J. P. Philbin, T. S. Haugland, T. K. Ghosh, E. Ronca, M. Chen, P. Narang, H. Koch, ArXiv: 2209.07956, 2022.
  3. Strong coupling in chiral cavities: nonperturbative framework for enantiomer discrimination“, R. R. Riso, L. Grazioli, E. Ronca, T. Giovannini, H. Koch, ArXiv: 2209.01987, 2022.


  1. Effective single mode methodology for strongly coupled multimode molecular-plasmon nanosystems“, M. Romanelli, R. R. Riso, T. S. Haugland, E. Ronca, S. Corni, H. Koch, Nano Letters, XXX, XXX, 2023.
  2. Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity“, C. Schäfer, J. Flick, E. Ronca*, P. Narang, A. Rubio, Nature Commun., 13, 7817, 2022.
  3. On the characteristic features of ionization in QED environments“, Rosario R. Riso, Tor S. Haugland, Enrico Ronca, Henrik Koch, 156, 234103, 2022.
  4. A perspective on ab initio modeling of polaritonic chemistry: The role of non-equilibrium effects and quantum collectivity“, D Sidler, M Ruggenthaler, C Schäfer, E Ronca, A Rubio, J. Chem. Phys. 156, 230901, 2022.
  5. Molecular orbital theory in cavity QED environment“, Rosario R. Riso, Tor S. Haugland, Enrico Ronca, Henrik Koch, Nature Commun., 13, 1368, 2022.
  6. Intermolecular interactions in optical cavities: an ab initio QED study“, T. S. Haugland, C. Schäfer, E. Ronca, A. Rubio, H. Koch, J. Chem. Phys., 154, 094113, 2021.
  7. Coupled Cluster Theory for Molecular Polaritons: Changing Ground and Excited States”, T. S. Haugland, E. Ronca, E. F. Kjønstad, A. Rubio, H. Koch, Phys. Rev. X, 10, 041043, 2020.
  8. Ground-state properties of the hydrogen chain: insulator-to-metal transition, dimerization, and magnetic phases“, M. Motta, C. Genovese, F. Ma, Z.-H. Cui, R. Sawaya, G. K.-L. Chan, N. Chepiga, P. Helms, C. Jimenez-Hoyos, A. J. Millis, Ushnish Ray, E. Ronca, H. Shi, S. Sorella, E. M. Stoudenmire, S. R. White, S. Zhang, Phys. Rev. X, 10, 031058, 2020.
  9. Recent developments in the PySCF program package“, Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S. Blunt, N. A. Bogdanov, G. H. Booth, J. Chen, Z.-H. Cui, J. J. Eriksen, Y. Gao, S. Guo, J. Hermann, M. R. Hermes, K. Koh, P. Koval, S. Lehtola, Z. Li, J. Liu, N. Mardirossian, J. D. McClain, M. Motta, B. Mussard, H. Q. Pham, A. Pulkin, W. Purwanto, P. J. Robinson, E. Ronca, E. Sayfutyarova, M. Scheurer, H. F. Schurkus, J. E. T. Smith, C. Sun, S.-N. Sun, S. Upadhyay, L. K. Wagner, X. Wang, A. White, J. D. Whitfield, M. J. Williamson, S. Wouters, J. Yang, J. M. Yu, T. Zhu, T. C. Berkelbach, S. Sharma, A. Sokolov, G. K.-L. Chan, J. Chem. Phys., 153, 024109, 2020.
  10. A Chemical Bond Mechanism for Helium Revealed by Electronic Excitation, D. Cesario, F. Nunzi, L. Belpassi, F. Pirani, E. Ronca, F. Tarantelli,  J. Phys. Chem. A, 123, 6572-6577, 2019.
  11. Cavity Quantum-Electrodynamical Chern Insulator: Toward Light-Induced Quantized Anomalous Hall Effect in Graphene, X. Wang, E. Ronca, M. A. Sentef, Phys. Rev. B, 99, 235156, 2019.
  12. Cavity control of Excitons in two dimensional MaterialsS. Latini, E. Ronca*, U. De Giovannini, H. Hübener, A. Rubio, Nano Lett., 19 (6), 3473-3479, 2019.
  13. Time-step targeting time-dependent and dynamical density matrix renormalization group algorithms with ab initio Hamiltonians” E. Ronca*, Z. Li, C. A. Jimenez-Hoyos, G. K.-L. Chan, J. Chem. Theory Comput., 13 (11), 5560–5571, 2017.
  14. Time-dependent N-electron valence perturbation theory with matrix product state reference wavefunctions for large active spaces and basis sets: Applications to the chromium dimer and all-trans polyenes“, A. Y. Sokolov, S. Guo, E. Ronca, G. K.-L. Chan, J. Chem. Phys., 406 (24), 244102, 2017 
  15. Spectral Functions of the Uniform Electron Gas via Coupled-Cluster Theory and Comparison to the GW and Related Approximations“, J. McClain, J. Lischner, T. Watson, D. A. Matthews, E. Ronca, S. G. Louie, T. C. Berkelbach, and G. K.-L. Chan, Phys. Rev. B, 93 (23), 235139, 2016
  16. Energy Level Alignment at Titanium Oxide–Dye Interfaces: Implications for Electron Injection and Light Harvesting“, L. Lasser, E. Ronca, M. Pastore, F. De Angelis, J. Cornil, R. Lazzaroni, D. Beljonne, J. Phys. Chem. C , 119 (18), 9899-9909, 2015
  17. Photoinduced Energy Shift in Quantum-Dot-Sensitized TiO2: A First-Principles Analysis“, J. M. Azpiroz, E. Ronca, F. De Angelis, J. Phys. Chem. Lett., 6 (8), 1423-1429, 2015
  18. Density Relaxation in Time-Dependent Density Functional Theory: Combining Relaxed Density Natural Orbitals and Multireference Perturbation Theories for an Improved Description of Excited States“, E. Ronca*, C. Angeli, L. Belpassi, F. De Angelis, F. Tarantelli, M. Pastore, J. Chem. Theory Comput., 10 (9), 4014-4024, 2014
  19. First-principles investigation of the TiO2/organohalide perovskites interface: The role of interfacial chlorine“, E. Mosconi, E. Ronca, F. De Angelis, J. Phys. Chem. Lett., 5 (15), 2619-2625, 2014
  20. A Quantitative View of Charge Transfer in the Hydrogen Bond: The Water Dimer Case“, E. Ronca*, L. Belpassi, F. Tarantelli, ChemPhysChem, 15 (13), 2682-2687, 2014
  21. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting“, A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, Nano Lett., 14 (6), 3608-3616, 2014
  22. Effect of sensitizer structure and TiO2 protonation on charge generation in dye-sensitized solar cells“, E. Ronca, G. Marotta, M. Pastore, F. De Angelis, J. Phys. Chem. C, 118 (30), 16927-16940, 2014
  23. Charge-displacement analysis for excited states“, E. Ronca*, M. Pastore, L. Belpassi, F. De Angelis, C. Angeli, R. Cimiraglia, F. Tarantelli, J. Chem. Phys., 140 (5), 054110, 2014
  24. Time-Dependent Density Functional Theory Modeling of Spin–Orbit Coupling in Ruthenium and Osmium Solar Cell Sensitizers“, E. Ronca, F. De Angelis, S. Fantacci, J. Phys. Chem. C, 118 (30), 17067-17078, 2014
  25. Impact of spin–orbit coupling on photocurrent generation in ruthenium dye-sensitized solar cells“, S. Fantacci, E. Ronca, F. De Angelis, J. Phys. Chem. Lett., 5 (2), 375-380, 2014
  26. High open-circuit voltages: evidence for a sensitizer-induced TiO2 conduction band shift in Ru(II)-dye sensitized solar cells“, T. Moehl, H.N. Tsao, K.L. Wu, H.C. Hsu, Y. Chi, E. Ronca, F. De Angelis, M. K. Nazeeruddin, M. Grätzel, Chem. Mater., 25 (22), 4497-4502, 2013
  27. Modeling the effect of ionic additives on the optical and electronic properties of a dye-sensitized TiO2 heterointerface: absorption, charge injection and aggregation“, S. Agrawal, T. Leijtens, E. Ronca, M. Pastore, H. Snaith, F. De Angelis, J. Mater. Chem. A, 1 (46), 14675-14685, 2013
  28. Inherent electronic trap states in TiO2 nanocrystals: effect of saturation and sintering“, F. Nunzi, E. Mosconi, L. Storchi, E. Ronca, A. Selloni, M. Grätzel, F. De Angelis, Energy Environ. Sci., 6 (4), 1221-1229, 2013
  29. Influence of the dye molecular structure on the TiO2 conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects“, E. Ronca, M. Pastore, L. Belpassi, F. Tarantelli, F. De Angelis, Energy Environ. Sci., 6 (1), 183-193, 2013
  30. Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: Interplay of theory and experiment“, C. Anselmi, E. Mosconi, M. Pastore, E. Ronca, F. De Angelis, Phys. Chem. Chem. Phys.14 (46), 15963-15974, 2012
  31. Revealing charge-transfer effects in gas-phase water chemistry“, D. Cappelletti, E. Ronca, L. Belpassi, F. Tarantelli, F. Pirani, Acc. Chem. Res., 45 (9), 1571-1580, 2012
%d bloggers like this: